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ABSTRACT

Several reports indicate that nonparametric bootstrap confidence intervals (Cls) produced by the percentile
method can yield overly liberal Type I error rates in small samples when the nominal o level is .05 or less. In the
Monte Carlo simuiations described here, percentile-method bootstrap 95% Cls for  produced higher Type I error
rates than standard parametric Cls in Gaussian and exponential samples of 40 or fewer observations.
[terated-bootstrap Cls for p, however, yielded Type I error rates near o = .05 in Gaussian and exponential samples
of as few as 10 observations. In exponential samples of 10 or more observations, iterated-bootstrap intervals
controlled Type I errors more reliably than parametric intervals and were not obviously inferior to the purametric
intervals when the data were Gaussian. Thus, ordinary percentile-method bootstrap CIs tor u may be of
questionable accuracy when Type I error rates are to be controlled at values of o £ .05 or so. On the other hand,
iterated-bootstrap Cls may be preferable to parametric CIs for data that come from a skewed distribution, such as
the exponential, provided » is 10 or more. In samples of about 10 observations or more, iterated Cls may yicld
better Type I error control than parametric Cls when the data are skewed and nearly the same Type [ error control
when the data are Gaussian.
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INTRODUCTION

Efron's bootstrap is a nonparametric technique for estimating variation in a statistic (Efron, 1979, 1982,
1988, Efron and Titshirani, 1991). The method involves repeatedly drawing subsamples trom an original data set,
The statistic of interest is calculated in each subsample, and the trequency distribution of its values is taken as an
approximation to the statistic's zctual sampling distribution. The bootstrap is noted for generality and a remarkable
ability to extract information from samples (Efron, 1982). Several investigators have noted, however, that standard
bootstrap confidence intervals (Cls) for the correlation coefficient yield overly liberal Type I error rates in small
samples when o is set to .05 or less (e.g., Efron, 1982, Rasmussen, 1987, 1988, Strube, 1988). This bias may
derive from a tendency of the bootstrap to produce too few subsamples with extreme values of the statistic under
examination (Young & Daniels, 1990). Indeed, Efron (1988) has observed that, although the bootstrap performs
well with a set to .10, nonparametric bootstrap Cls perform better when "not pushed too far toward extreme
coverage probabilities” (p. 295). Hewever, in psychology, and many other areas of science, it is conventional to set
Type I error rates to .05 or less,

Bootstrap resampling is performed by randomly drawing observations from an empirical data set.
Observations are drawn with replacement and in such a way that each item in the original data set has an equal
probability of entering a subsample. By conveation, the number ot observations drawn for each subsample, », is
usually set equal to the number of observations in the original sample. The number of bootstrap subsamples drawn,
N, varies with the problem. Nonparametric bootstrap Cls are typically based on 500-2,000 subsamples; Efron
(1988) suggests using a minimum of 1,000 subsamples.

A nonparametric, "percentile-method" bootstrap CI for ar: arbitrary statistic, 6, is generated by drawing N
bootstrap subsamples, calculating the statistic’s sample estimate, 6, in each subsample, finding the 100a/? and
100(1 - a/2) percentiles of the frequency distribution ot the values ot § thus produced, and taking the interval
between these points as the range of'a 100(1 - @)% CL. In this way, the percentile method "automatically”
determines a set of approximate contidence limits associated with a given probability of Type I error. The
percentile method does not require the assumption that the data follow any specific probability distribution. Its
validity does, however, depsnd on the validity of assuming that distributions of bootstrap subsamples tend to reflect
the forms of actual sampling distributions. The results of Rasmussen (1987, 1988) and Strube (1988) suggest that
this assumption may sometimes be invalid when n is small and the desired o is .05 or less.

Several approaches to correcting the percentile method's bias have been proposed. The bias-corrected
percentile method (Efron, 1982) yields Cls with better coverage properties than those of ordinary percentile-method
Cls. However, the bias-corrected percentile method reintroduces parametric (Gaussian) assumptions. Furthermore,
Monte Carlo studies have shown that the corrections it produces may be too small when n is small and o is set to
.05 (two-tailed) or less (Strube, 1988). Another correction, the zccelerated bias-corrected percentile method is
cvidently quite accurate in some situations (Efron, 1987). However, the accelerated bias-corrected method requires
calculating an analytic correction factor that can be difficult or impossille to derive (Loh & Wu, 1987). For this
reason, the accelerated bias-corrected method may be of questionable uu.ay in routine data analyses conducted by
nonspecialists.

The iterated bootstrap is a computationally intensive methed of cotrecting the bootstrap's bias (Beran,
1987; Hall, 1986, Hall & Marnuu, 1988, Martin, 1990). Like the ordinary percentile-method boostiap (and unlike
the bias-corrected and accelerated bias-corrected methods) the iterated percentile-method bootstrap sets confidence
limits automatically and requires no specific parametric assumptions. An iterated-bootstrap 95% CI for the mean
can be calculated by first drawing N lirst-order bootstrap subsamples from an empirical sample. One then draws M
bootstrap subsaniples from each first-order subsample. This yields N sets of M second-order subsamples. The
second-order subsamples drawn from each first-order subsample are used to calculate an ordinary percentile-method
CI for u. This produces N second-order, percentile-method Cls. The widths of the second-order Cls are then




calibrated Ly adjusting their lower and upper cutoff percentages until values are found that cause 95% of the
intervals to cover the sample mean. The empirically corrected cutoff percentages thus obtained are then substituted
for 100002 and 100(1 - a/2)% in an ordinary percentile-method CI derived from the means of the first-order
subsamples. The process of replacing the nominal cutoff percentages with the empirical percentages comprises the
correction for the bootstrap's bias.

The Monte Carlo studies described in the following sections were carried out to examine the Type [ error
rates of iterated-bootstrap Cls for the mean in small samples from a decidedly nonGaussian population, the
exponential. A CI for the mean expresses the precision with which a measurement has been obtained, and can be
used to test hypotheses about the location of p. For example, a two-sided, 100(] - «)% CI for u that fails to cover 0
can be used to justify rejecting the null hypothesis that p = 0 with significance a.. Hence, the results deseribed here
are relevant to one-sample hypothesis tests, such as tests of differences between correlated vbservations and single-
degree-of-freedom orthogonal polynomial contrasts. Exponential samples were chosen for examination because
they can be generated fairly rapidly (a consideration in Monte Carlo studies of iterated bootstrapping) and because
they represent a nearly worst-case scendario of sampling from a skewed distribution. Although psvchiological data
that precisely follow an exponential distribution are probably rare, many types of data tend to exhibit the posttively
skewed form of the exponential (or a mirror image therof), particularly when floor or ceiling ettects operate.
Examples include accuracies on easy tests, error counts in reaction-time studies, answers on some rating scales and
symptom questionnaires, and lapse probabilities during minor sleep deprivation.

METHODS

The simulations described here were written in Fortran-77 and run on an Intel 860 reduced instruction set
computer installed in a desktop PC. Three types of Cls were examined: Gausstan-theory (Student's 1), percentile-
method bootstrap, and iterated percentile-method bootstrap. Random samples of data were drawn from two
distributions, one Gaussian und one exponential. Gaussian samples were generated by randomiy druwing values
from a normal distribution with p = 0 and g = 1. Exponential samples were generated by drawing values from an
exponential distribution with u = 6 = 1. Gaussian variables were generated by the direct method; exponential
variables were generated by the inverse method (Zelen & Severo, 1970).

Gaussian-theory aud percentile-method Cls were examined in Gaussian and exponentially distributed
samples with sizes of 5, 10, 20, 40, 80, and 160. ltcrated-bootstrap Cls were examined in Gaussian and
exponentially distributed samples with sizes of 5, 10, 15, 20, and 25. One thousand contidence intervals were
created in each experimental condition defined by a combination of CI type, probability distribution, and sample
size. The observed Type | error rate in each experimental condition was calculated as the proportion of Cls that
tailed to cover u.

Gaussian-theory Cls were calculated as x # ;. ,»(s,), where x was the sample mean, 1, ,, the cntical
value of Student's ¢ corresponding to 1 - &/2 = 975 with n - | degrees of freedom, and s, the sample estunate of the
standard error of the mean. Percentile-method Cls were calculated by drawing vV = 1,000 bootstrap subsumples
from an empirical sample, calculating the means of the subsamples, sorting the N means, and taking 25th- and
975th-largest values as the 1000/2% and 100(1 - /2)% limits of a 95% CI, respectively.

An iterated-bootstrap CI was calculated by drawing ¥ = 1,000 first order bootstrap subsamples trom an
empirical sample, drawing M = 1,000 second order bootstrap samples from each first-order sample, and calculating
the means of the second-order samples. The ¥ = 1,000 cumulative frequency distributions of second-order
subsample means produced by this method were searched for the percentile that exceeded the sample mean in 2 5%
of the distributions of second-order means. A similar search was performed tor the percentile that exceeded the
sample mean in 97.5% of the distributions of second-order means. An ordinary percentile-method C1 was then




constructed from the means of the first-order subsamples after replacing the standard 100a/2 and 100(1 - w/?2)
percentage points with the corrected percentage points obtained from the search through the second-order means.

RESULTS AND DISCUSSION

Figure 1 illustrates the performance of the Gaussian-theory and percentile-method Cls in Gaussian
sawnples. The Type | error rates of the Student's t-based intervals are near the nominal a level of .05 at all sample
sizes. In contrast, the Type [ error rates of the percentile-method intervals are much higher than 05 in small
samples, averaging about .153 wher, n = 5 and not closcly approsching .05 until n reaches about 40 In samples of
about 40 or more observations, the percentile-method bootstrap works tairly well. In small samples, however, the
percentile method yiclds confidence limits that are too narrow, thus yielding large numbers of Type | errors
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error rates were .05, samples were Gaussian.

Figure 2 illustrates the performance of the Gaussian and percentile-method bootstsap intervals 1in samples
drawn from the exponential distnibution. Both types ol intervals produce Type [ errors at rates much hagher than
.05 in samples smaller than 20. Interestingly, the parametric intervals are less biased than the nonparametnic
intervals. Neither interval, however, performs especially well in exponential samples of the sizes ¢xamined here

Figure 3 illustrates the performance of the iterated-bootstrap intervals in sampies lrom Gaussian and
exponential distributions. In samples of five observations, the iterated-bootstrap’s Type | error rate is still very
high, averaging about .138 in the Gaussian samples and about 134 in the exponential samples In sampies o
size 10, however, the iterated-bootstrup’s Type | error rate is ncar the nominal level of @ = 05 1n Gaussian samples
and only slightly higher in exponential samples (averaging about 058 in the exponential data) In samples of 15 or
more observations, the iterated bootstrap's observed Type [ error rate 1s within samphing error of @ = 05 in both




Gaussian and exponential samples. (By the normal approximation to the binomial, the standard error of the
estimate of o = .05 in samples of 1,000 should be roughly [(a)(1 - &)/1000}'? « .007.)
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SUMMARY

None of the methods yielded Type I error rates near o. = .05 in samples of five observations drawn from an
exponential distribution. Iterated-bootstrap intervals produced liberal Type I error rates in samples of fewer than
about 10 observations. Student's t-based CIs were seriously biased in samples of 20 or fewer observations.
Ordinary percentile-method bootstrap Cls were more biased than the Student's +-based Cls in samples this small.

Except in the smallest samples (n = 5), the iterated-bootstrap intervals yielded Type I error rates in
Gaussian data that were indistinguishable from those of the Gaussian-theory intervals. Considering the fact that the
t-based Cls are theoretically optimal when the data are Gaussian, this performance seems remarkable for a
nonparametric technique. The tailure of the iterated bootstrap in the n = § condition is disappointing but
unsurprising given the uncertainties involved in reconstructing the sampling distribution of the mean from so few
observations.

An iterated bootstrap consumes substantially more computer time than the ordinary bootstrap, which is
itself comiputationally demanding. When V and M are set to 1,000, for example, an iterated bootstrap requires
drawing NM = 1,000,000 subsamples, calculating 1,001,001 values of the statistic of interest, and sorting 1,001
arrays of 1,000 means. Some additional time is spent searching the arrays of second-order means for the adjusted
percentile cutoffs. Calculations of this magnitude take time but are within the capabilities ot reasonably fast
desktop computers. A problem with n = 15 and N = M = 1,000, for example, might require about 6 min in
efficiently coded Fortran on a 20-MHz 386-based machine with a math coprocessnr.

RECOMMENDATIONS

1. Ordinary percentile-method bootstrap Cls for u may be of questionable value when Type 1 error rates are to be
conirolled at vaiues as low as .05, This is because, when a £ .05, percentile-method Cls may perform less well than
parametric Cls in small samples and no better than parametric Cls in large samples.

2. When it is possible that data may have been drawn from a skewed distribution, like the exponential,
iterated-bootstrap CIs may be preferable to parametric Cls if » is about 10 or more. Under these conditions, iterated
Cls may yield better levels of Type I error contol than parametric Cls when the data are skewed, and approximately
the same level of Type [ error control when the data are drawn from a1 Gaussian distribution.
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